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Abstract: In this paper, based on Jumarie’s modified Riemann-Liouville (R-L) fractional derivative and a new 

multiplication of fractional analytic functions, a type of fractional power series is studied. We can find the exact 

solution of this fractional power series by using some methods. In fact, our result is a generalization of classical 

calculus result. Moreover, some examples are provided to illustrate our result. In fact, our result is a generalization 

of traditional calculus result. 
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I.   INTRODUCTION 

Fractional calculus is a field of mathematical analysis. It studies and applies the integral and derivative of arbitrary order. 

In recent years, fractional calculus has been widely used in physics, engineering, economics, and other fields [1-12]. 

However, fractional calculus is different from ordinary calculus. The definition of fractional derivative is not unique. 

Common definitions include Riemann-Liouville (R-L) fractional derivative, Caputo fractional derivative, Grunwald-

Letnikov (G-L) fractional derivative, and Jumarie’s modified R-L fractional derivative [13-16]. Since Jumarie’s modified 

R-L fractional derivative helps avoid non-zero fractional derivative of constant functions, it is easier to use this definition 

to associate fractional calculus with classical calculus. 

In this paper, based on Jumarie type of R-L fractional derivative and a new multiplication of fractional analytic functions 

we study the following 𝛼-fractional power series: 

                                                                                          ∑
𝑘!∙(𝑝𝑘2+𝑞𝑘+𝑟)

Γ(𝑘𝛼+1)
𝑥𝑘𝛼∞

𝑘=0  ,                                            

where 0 < 𝛼 ≤ 1, −1 <
1

Γ(𝛼+1)
𝑥𝛼 < 1 and 𝑝, 𝑞, 𝑟 are real numbers. The exact solution of this fractional power series can 

be obtained by using some techniques. In addition, our result is a generalization of traditional calculus result. 

II.   PRELIMINARIES 

Firstly, we introduce the fractional derivative used in this paper and its properties. 

Definition 2.1 ([17]): Let 0 < 𝛼 ≤ 1, and 𝑥0 be a real number. The Jumarie type of Riemann-Liouville (R-L) 𝛼-fractional 

derivative is defined by 

                                                                        ( 𝐷𝑥0 𝑥
𝛼)[𝑓(𝑥)] =

1

Γ(1−𝛼)

𝑑

𝑑𝑥
∫

𝑓(𝑡)−𝑓(𝑥0)

(𝑥−𝑡)𝛼 𝑑𝑡
𝑥

𝑥0
 .                                                   (1) 

where Γ( ) is the gamma function. Moreover, for any positive integer 𝑝, we define ( 𝐷𝑥0 𝑥
𝛼)

𝑝
[𝑓(𝑥)] = ( 𝐷𝑥0 𝑥

𝛼)( 𝐷𝑥0 𝑥
𝛼) ∙∙∙

( 𝐷𝑥0 𝑥
𝛼)[𝑓(𝑥)], the 𝑝-th order 𝛼-fractional derivative of 𝑓(𝑥). 

Proposition 2.2 ([18]):  If  𝛼, 𝛽, 𝑥0, 𝐶  are real numbers and 𝛽 ≥ 𝛼 > 0, then 

                                                                                   ( 𝐷0 𝑥
𝛼)[𝑥𝛽] =

Γ(𝛽+1)

Γ(𝛽−𝛼+1)
𝑥𝛽−𝛼,                                                              (2) 
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and 

                                                                                               ( 𝐷0 𝑥
𝛼)[𝐶] = 0.                                                                         (3) 

In the following, we introduce the definition of fractional analytic function. 

Definition 2.3 ([19]): Let 𝑥, 𝑥0, and 𝑎𝑘 be real numbers for all 𝑘, 𝑥0 ∈ (𝑎, 𝑏), and 0 < 𝛼 ≤ 1. If the function 𝑓𝛼: [𝑎, 𝑏] → 𝑅 

can be expressed as an 𝛼 -fractional power series, that is, 𝑓𝛼(𝑥𝛼) = ∑
𝑎𝑘

Γ(𝑘𝛼+1)
(𝑥 − 𝑥0)𝑘𝛼∞

𝑘=0  on some open interval 

containing 𝑥0, then we say that 𝑓𝛼(𝑥𝛼) is 𝛼-fractional analytic at 𝑥0. In addition, if 𝑓𝛼: [𝑎, 𝑏] → 𝑅 is continuous on closed 

interval [𝑎, 𝑏] and it is 𝛼-fractional analytic at every point in open interval (𝑎, 𝑏), then 𝑓𝛼 is called an 𝛼-fractional analytic 

function on [𝑎, 𝑏]. 

Next, we introduce a new multiplication of fractional analytic functions.  

Definition 2.4 ([20]): If 0 < 𝛼 ≤ 1. Assume that 𝑓𝛼(𝑥𝛼) and 𝑔𝛼(𝑥𝛼) are two 𝛼-fractional power series at 𝑥 = 𝑥0, 

                                                                                    𝑓𝛼(𝑥𝛼) = ∑
𝑎𝑘

Γ(𝑘𝛼+1)
(𝑥 − 𝑥0)𝑘𝛼∞

𝑘=0 ,                                                    (4) 

                                                                                   𝑔𝛼(𝑥𝛼) = ∑
𝑏𝑘

Γ(𝑘𝛼+1)
(𝑥 − 𝑥0)𝑘𝛼∞

𝑘=0 .                                                    (5) 

Then  

                                                                    𝑓𝛼(𝑥𝛼)⨂𝛼 𝑔𝛼(𝑥𝛼)  

                                                               = ∑
𝑎𝑘

Γ(𝑘𝛼+1)
(𝑥 − 𝑥0)𝑘𝛼∞

𝑘=0 ⨂𝛼 ∑
𝑏𝑘

Γ(𝑘𝛼+1)
(𝑥 − 𝑥0)𝑘𝛼∞

𝑘=0   

                                                               = ∑
1

Γ(𝑘𝛼+1)
(∑ (

𝑘
𝑚

) 𝑎𝑘−𝑚𝑏𝑚
𝑘
𝑚=0 )∞

𝑘=0 (𝑥 − 𝑥0)𝑘𝛼 .                                               (6) 

Equivalently, 

                                                         𝑓𝛼(𝑥𝛼)⨂𝛼 𝑔𝛼(𝑥𝛼) 

                                                    = ∑
𝑎𝑘

𝑘!
(

1

Γ(𝛼+1)
(𝑥 − 𝑥0)𝛼)

⨂𝛼 𝑘
∞
𝑘=0 ⨂𝛼 ∑

𝑏𝑘

𝑘!
(

1

Γ(𝛼+1)
(𝑥 − 𝑥0)𝛼)

⨂𝛼 𝑘
∞
𝑘=0   

                                                    = ∑
1

𝑘!
(∑ (

𝑘
𝑚

) 𝑎𝑘−𝑚𝑏𝑚
𝑘
𝑚=0 )∞

𝑘=0 (
1

Γ(𝛼+1)
(𝑥 − 𝑥0)𝛼)

⨂𝛼 𝑘

 .                                             (7) 

Definition 2.5 ([21]): Suppose that 0 < 𝛼 ≤ 1 , and 𝑓𝛼(𝑥𝛼) ,  𝑔𝛼(𝑥𝛼)  are two 𝛼 -fractional analytic functions. Then 

(𝑓𝛼(𝑥𝛼))
⨂𝛼 𝑘

= 𝑓𝛼(𝑥𝛼)⨂𝛼 ⋯ ⨂𝛼 𝑓𝛼(𝑥𝛼) is called the 𝑘-th power of 𝑓𝛼(𝑥𝛼). On the other hand, if 𝑓𝛼(𝑥𝛼)⨂𝛼 𝑔𝛼(𝑥𝛼) = 1, 

then 𝑔𝛼(𝑥𝛼) is called the ⨂𝛼  reciprocal of 𝑓𝛼(𝑥𝛼), and is denoted by (𝑓𝛼(𝑥𝛼))
⨂𝛼 (−1)

. 

III.   RESULTS AND EXAMPLES 

In this section, we will find the exact solution of a type of fractional power series. In addition, we provide some examples 

to illustrate our result. At first, we need a lemma. 

Lemma 3.1: Let 0 < 𝛼 ≤ 1 and  −1 <
1

Γ(𝛼+1)
𝑥𝛼 < 1. Then  

                                                                    ∑
𝑘!

Γ(𝑘𝛼+1)
𝑥𝑘𝛼∞

𝑘=0 = (1 −
1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 (−1)

,                                                (8) 

                                                                    ∑
𝑘!∙(𝑘+1)

Γ(𝑘𝛼+1)
𝑥𝑘𝛼∞

𝑘=0 = (1 −
1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 (−2)

,                                                (9) 

and 

                                                         ∑
𝑘!∙𝑘(𝑘+1)

Γ(𝑘𝛼+1)
𝑥𝑘𝛼∞

𝑘=0 = 2 ∙
1

Γ(𝛼+1)
𝑥𝛼⨂𝛼 (1 −

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 (−3)

.                             (10) 
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Proof                                                        ∑
𝑘!

Γ(𝑘𝛼+1)
𝑥𝑘𝛼∞

𝑘=0  

                                                               = ∑ (
1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 𝑘
∞
𝑘=0   

                                                               = (1 −
1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 (−1)

 . 

And 

                                                                 ∑
𝑘!∙(𝑘+1)

Γ(𝑘𝛼+1)
𝑥𝑘𝛼∞

𝑘=0  

                                                             = ∑ (𝑘 + 1) (
1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 𝑘
∞
𝑘=0    

                                                             = ∑ ( 𝐷0 𝑥
𝛼) [(

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 (𝑘+1)

]∞
𝑘=0   

                                                             = ( 𝐷0 𝑥
𝛼) [∑ (

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 (𝑘+1)
∞
𝑘=0 ]  

                                                             = ( 𝐷0 𝑥
𝛼) [∑ (

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 𝑘
∞
𝑘=0 ]  

                                                             = ( 𝐷0 𝑥
𝛼) [(1 −

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 (−1)

]  

                                                             = (1 −
1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 (−2)

 . 

On the other hand, 

                                                                            ∑
𝑘!∙𝑘(𝑘+1)

Γ(𝑘𝛼+1)
𝑥𝑘𝛼∞

𝑘=0   

                                                                       = ∑ 𝑘(𝑘 + 1) (
1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 𝑘
∞
𝑘=0   

                                                                       =
1

Γ(𝛼+1)
𝑥𝛼⨂𝛼 ∑ 𝑘(𝑘 + 1) (

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 (𝑘−1)
∞
𝑘=1   

                                                                       =
1

Γ(𝛼+1)
𝑥𝛼⨂𝛼 ∑ ( 𝐷0 𝑥

𝛼)
2

[(
1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 (𝑘+1)

]∞
𝑘=1   

                                                                       =
1

Γ(𝛼+1)
𝑥𝛼⨂𝛼 ( 𝐷0 𝑥

𝛼)
2

[∑ (
1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 (𝑘+1)
∞
𝑘=1 ]  

                                                                       =
1

Γ(𝛼+1)
𝑥𝛼⨂𝛼 ( 𝐷0 𝑥

𝛼)
2

[∑ (
1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 𝑘
∞
𝑘=0 ]  

                                                                       =
1

Γ(𝛼+1)
𝑥𝛼⨂𝛼 ( 𝐷0 𝑥

𝛼)
2

[(1 −
1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 (−1)

]  

                                                                       =
1

Γ(𝛼+1)
𝑥𝛼⨂𝛼 ( 𝐷0 𝑥

𝛼) [(1 −
1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 (−2)

]  

                                                                       =
1

Γ(𝛼+1)
𝑥𝛼⨂𝛼 [2 (1 −

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 (−3)

]  

                                                                       = 2 ∙
1

Γ(𝛼+1)
𝑥𝛼⨂𝛼 (1 −

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 (−3)

 .                                         Q.e.d. 
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Theorem 3.2: Let 0 < 𝛼 ≤ 1,  −1 <
1

Γ(𝛼+1)
𝑥𝛼 < 1, and 𝑝, 𝑞, 𝑟 be real numbers. Then  

    ∑
𝑘!∙(𝑝𝑘2+𝑞𝑘+𝑟)

Γ(𝑘𝛼+1)
𝑥𝑘𝛼∞

𝑘=0  

= 2𝑝 ∙
1

Γ(𝛼+1)
𝑥𝛼⨂𝛼 (1 −

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 (−3)

+ (𝑞 − 𝑝) ∙ (1 −
1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 (−2)

+ (𝑟 + 𝑝 − 𝑞) ∙ (1 −
1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 (−1)

 . 

                                                                                                                                                                                (11) 

Proof  By Lemma 3.1, 

      ∑
𝑘!∙(𝑝𝑘2+𝑞𝑘+𝑟)

Γ(𝑘𝛼+1)
𝑥𝑘𝛼∞

𝑘=0  

 = ∑ (𝑝𝑘2 + 𝑞𝑘 + 𝑟) (
1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 𝑘
∞
𝑘=0   

 = ∑ [𝑝𝑘(𝑘 + 1) + (𝑞 − 𝑝)(𝑘 + 1) + (𝑟 + 𝑝 − 𝑞)] (
1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 𝑘
∞
𝑘=0   

 = 𝑝 ∙ ∑ 𝑘(𝑘 + 1) (
1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 𝑘

+ (𝑞 − 𝑝) ∙∞
𝑘=0 ∑ (𝑘 + 1) (

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 𝑘
∞
𝑘=0 + (𝑟 + 𝑝 − 𝑞) ∙ ∑ (

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 𝑘
∞
𝑘=0   

  = 2𝑝 ∙
1

Γ(𝛼+1)
𝑥𝛼⨂𝛼 (1 −

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 (−3)

+ (𝑞 − 𝑝) ∙ (1 −
1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 (−2)

+ (𝑟 + 𝑝 − 𝑞) ∙ (1 −
1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 (−1)

 . 

                                                                                                                                             Q.e.d. 

Example 3.3: Let 0 < 𝛼 ≤ 1  and  −1 <
1

Γ(𝛼+1)
𝑥𝛼 < 1, then 

                 ∑
𝑘!∙(𝑘2+2𝑘+3)

Γ(𝑘𝛼+1)
𝑥𝑘𝛼∞

𝑘=0   

            = 2 ∙
1

Γ(𝛼+1)
𝑥𝛼⨂𝛼 (1 −

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 (−3)

+ (1 −
1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 (−2)

+ 2 ∙ (1 −
1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 (−1)

 .               (12) 

And 

               ∑
𝑘!∙(5𝑘2−4𝑘+2)

Γ(𝑘𝛼+1)
𝑥𝑘𝛼∞

𝑘=0   

            = 10 ∙
1

Γ(𝛼+1)
𝑥𝛼⨂𝛼 (1 −

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 (−3)

− 9 ∙ (1 −
1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 (−2)

+ 11 ∙ (1 −
1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 (−1)

 .      (13) 

IV.   CONCLUSION 

In this paper, based on Jumarie’s modified R-L fractional derivative and a new multiplication of fractional analytic 

functions, a type of fractional power series is studied. We can find the exact solution of this fractional power series by using 

some techniques. In fact, our result is a generalization of traditional calculus result. In the future, we will continue to use 

our methods to study the problems in fractional differential equations and applied mathematics. 
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